Аналогичные формулы получатся и для других осей поворота (то есть Ox, Oy). Поворот относительно произвольной оси, проходящей через начало координат, можно сделать с помощью этих поворотов - сделать поворот относительно Ox так, чтобы ось поворота стала перпендикулярна Oy, затем поворот относительно Oy так, чтобы ось поворота совпала с Oz, сделать собственно поворот, а затем обратные повороты относительно Oy и Ox. Можно даже вывести формулы для такого поворота и убедиться в том, что они очень громоздкие.
Вспомним о матрицах и векторах и внимательно посмотрим на выведенные формулы для поворота. Можно заметить, что
[ x' ] = [ cos(alpha) -sin(alpha) 0 ] [ x ]
[ y' ] = [ sin(alpha) cos(alpha) 0 ] [ y ]
[ z' ] = [ 0 0 1 ] [ z ]
То есть поворот на угол alpha задается одной и той же матрицей, и с помощью этой матрицы (умножая ее на вектор-точку) можно получить координаты повернутой точки. Пока никакого выигрыша не видно - здесь умножение матрицы на вектор требует больше операций, чем расчет x' и y' по формулам.
Удобство матриц для нас заключается как раз в свойстве A*(B*C) = (A*B)*C. Пусть мы делаем несколько поворотов подряд, например, пять (как раз столько, сколько надо для поворота относительно произвольной оси), и пусть они задаюся матрицами A, B, C, D, E (A - матрица самого первого поворота, E - последнего). Тогда для вектора p мы получаем
p' = E*(D*(C*(B*(A*p)))) = E*D*C*B*A*p = (E*D*C*B*A)*p =
= (E*(D*(C*(B*A))))*p = T*p,
где
T = (E*(D*(C*(B*A))))
матрица преобразования, являющегося комбинацией пяти поворотов. Посчитав один раз эту матрицу, можно в дальнейшем без проблем применить довольно сложное преобразование из пяти поворотов к любому вектору с помощью всего одного умножения матрицы на вектор.
Таким образом, можно задать любой поворот матрицей, и любая комбинация поворотов также будет задаваться матрицей, которую можно довольно легко посчитать. Но есть еще параллельный перенос, есть еще масштабирование. Что делать с ними?
На самом деле, эти преобразования тоже легко записываются в виде матриц. Только вместо матриц 3x3 и 3-мерных векторов используются так называемые однородные 4-мерные координаты и матрицы 4x4. При этом вместо векторов вида
[ x ]
[ y ]
[ z ]
используются вектора вида
[ x ]
[ y ]
[ z ]
[ 1 ]
а вместо произвольных матриц 3x3 используются матрицы 4x4 такого вида:
[ a b c d ]
[ e f g h ]
[ i j k l ]
[ 0 0 0 1 ]
Видно, что если d = h = l = 0, то в результате применения всех операций получается то же самое, что и для матриц 3x3.
Матрица параллельного переноса теперь определяется как
[ 1 0 0 dx ]
[ 0 1 0 dy ]
[ 0 0 1 dz ]
[ 0 0 0 1 ]
Матрицу масштабирования можно определить и для матриц 3x3, и для матриц 4x4:
[ kx 0 0 ] [ kx 0 0 0 ]
[ 0 ky 0 ] или [ 0 ky 0 0 ]
[ 0 0 kz ] [ 0 0 kz 0 ]
[ 0 0 0 1 ]
где kx, ky, kz - коэффициенты масштабирования по соответствующим осям.
Таким образом, получаем следующее. Любое нужное нам преобразование пространства можно задать матрицей 4x4 определенной структуры, разной для разных преобразований. Результат последовательного выполнений нескольких преобразований совпадает с результатом одного преобразования T, которое также задается матрицей 4x4, вычисляемой как произведение матриц всех этих преобразований. Важен порядок умножения, так как A*B != B*A. Результат применения преобразования T к вектору [ x y z ] считается как результат
умножения матрицы T на вектор [ x y z 1 ]. Вот и все.
Осталось только на примере показать, почему A*B != B*A. Пусть A - матрица переноса, B - поворота. Если мы сначала перенесем объект, а потом повернем относительно центра координат (это будет B*A), получим далеко не то, что будет, если сначала объект повернуть, а потом перенести (это уже A*B).
4. Рисование одноцветного треугольника
Без понимания того, как рисовать залитый одним цветом треугольник, дальше лезть в 3D графику явно не стоит. Поэтому вот объяснение.
Возьмем любой треугольник. Его изображение на экране - набор горизонтальных отрезков, причем из-за того, что треугольник - фигура выпуклая, каждой строке экрана соответствует не более одного отрезка. Поэтому достаточно пройтись по всем строкам экрана, с которыми пересекается треугольник (то есть, от минимального до максимального значения y для вершин треугольника), и нарисовать соответствующие горизонтальные отрезки.
Отсортируем вершины так, чтобы вершина A была верхней, C - нижней, тогда у нас min_y = A.y, max_y = C.y, и нам надо пройтись по всем линиям от min_y до max_y. Рассмотрим какую-то линию sy, A.y <= sy <= C.y. Если sy < B.y, то она пересекает стороны AB и AC; если sy >= B.y - то стороны BC и AC. Мы знаем координаты всех вершин, поэтому мы можем написать уравнения сторон и найти пересечение нужной стороны с прямой y = sy. Получим два конца отрезка. Так как мы не знаем, какой из них левый, а какой правый, сравним их координаты по x и обменяем значения, если надо. Рисуем этот отрезок, повторяем процедуру
для каждой строки - и вуаля, трегуольник нарисован.
Остановимся более подробно на нахождении пересечения прямой y = sy (текущей строки) и стороны треугольника, например AB. Напишем уравнение прямой AB в форме x = k*y+b:
x = A.x+(y-A.y)*(B.x-A.x)/(B.y-A.y)
Подставляем сюда известное для текущей прямой значение y = sy:
x = A.x+(sy-A.y)*(B.x-A.x)/(B.y-A.y)
Вот, в общем-то, и все. Для других сторон пересечение ищется совершенно точно
так же. А вот и пример кода.
// ...
// здесь сортируем вершины (A,B,C)
// ...
for (sy = A.y; sy <= C.y; sy++) {
x1 = A.x + (sy - A.y) * (C.x - A.x) / (C.y - A.y);
if (sy < B.y)
x2 = A.x + (sy - A.y) * (B.x - A.x) / (B.y - A.y);
else
x2 = B.x + (sy - B.y) * (C.x - B.x) / (C.y - B.y);
if (x1 > x2) { tmp = x1; x1 = x2; x2 = tmp; }
drawHorizontalLine(sy, x1, x2);
}
// ...
Надо, правда, защититься от случая, когда B.y = C.y - в этом (и только этом, потому как если C.y = A.y, то треугольник пустой и рисовать его не стоит, или можно рисовать горизонтальную линию; а если B.y = A.y, то sy >= A.y и до деления на B.y - A.y не дойдет) случае произойдет попытка деления на ноль.
Код изменится совсем чуть-чуть:
// ...
// здесь сортируем вершины (A,B,C)
// ...
for (sy = A.y; sy <= C.y; sy++) {
x1 = A.x + (sy - A.y) * (C.x - A.x) / (C.y - A.y);
if (sy < B.y)
x2 = A.x + (sy - A.y) * (B.x - A.x) / (B.y - A.y);
else {
if (C.y == B.y)
x2 = B.x;
else
x2 = B.x + (sy - B.y) * (C.x - B.x) / (C.y - B.y);
}
if (x1 > x2) { tmp = x1; x1 = x2; x2 = tmp; }
drawHorizontalLine(sy, x1, x2);
}
// ...
Вот и все. Ну, горизонтальную линию, надеюсь, нарисовать сумеют все желающие.
5. Работа с произвольной камерой
----------------------------------
Рассмотрим любую камеру как точку - центр проецирования и экран - плоский прямоугольник в 3D пространстве, на плоскость которого идет проецирование. Наша стандартная камера, например, задается точкой (0,0,-dist) и экраном с вершинами (-xSize/2,ySize/2), ..., (xSize/2,-ySize/2). Можно задать эту систему тремя векторами, задающими с точки зрения камеры направления вперед, вправо и вверх; вектор "вперед" соединяет центр проецирования и центр экрана, вектор "вправо" соединяет центр экрана и правую его границу, вектор "вверх", соответственно, центр экрана и верхнюю его границу. Обозначим эти вектора как p, q и r соответственно, а центр проецирования за s. Вот пример для
стандартной камеры.
Здесь (для стандартной камеры; обозначим ее вектора как Sp, Sq, Sr, Ss)
Sp = p = (0,0,dist)
Sq = q = (xSize/2,0,0)
Sr = r = (0,ySize/2,0)
Ss = s = (0,0,-dist)
Любые три взаимно перпендикулярных вектора и точка - центр координат задают в 3D пространстве систему координат. Так что объект мы можем рассматривать в системе обычных координат (x,y,z), в системе координат стандартной камеры (Sp,Sq,Sr) или в системе (p,q,r), соответствующей какой-то произвольной камере. В любом случае, если (a,b,c) - координаты точки в системе координат камеры (точнее, в системе координат с центром в точке s и базисом (p,q,r)), то координаты проекции точки на экране равны
screenX = xSize/2 + xSize/2 * a/c
screenY = ySize/2 - ySize/2 * b/c